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CONS P EC TU S

A dvances in the fields of catalysis and electrochemical energy
conversion often involve nanoparticles, which can have

kinetics surprisingly different from the bulk material. Classical
theories of chemical kinetics assume independent reactions in dilute
solutions, whose rates are determined by mean concentrations. In
condensed matter, strong interactions alter chemical activities and
create variations that can dramatically affect the reaction rate. The
extreme case is that of a reaction coupled to a phase transformation,
whose kinetics must depend not only on the order parameter but
also on its gradients at phase boundaries. Reaction-driven phase
transformations are common in electrochemistry, when charge
transfer is accompanied by ion intercalation or deposition in a solid
phase. Examples abound in Li-ion, metal�air, and lead�acid
batteries, as well as metal electrodeposition�dissolution. Despite complex thermodynamics, however, the standard kinetic model
is the Butler�Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers
isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases.

The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong
tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled
phase separation in LFP as an isotropic “shrinking core” within each particle, but experiments later revealed striped phase
boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase
transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could
not predict the roles of phase separation and surface modification.

In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering
these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed
in terms of variational chemical potentials. The theory unifies and extends the Cahn�Hilliard and Allen�Cahn equations through a
master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and
Butler�Volmer kinetics for concentrated solutions and ionic solids.

This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain
enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as
“intercalation waves”, nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and
below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated
temperatures and currentsmay enhance battery performance and lifetime by suppressing phase separation. The theory has also been
extended to porous electrodes and could be used for battery engineering with multiphase active materials.

More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of
molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium
states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable
to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in
biological cells.
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Introduction
Breakthroughs in catalysis and electrochemical energy con-

version often involve nanoparticles, whose kinetics can

differ unexpectedly from the bulk material. Perhaps the

most remarkable case is lithium iron phosphate, LixFePO4

(LFP). In the seminal study of micrometer-sized LFP particles,

Padhi et al.1 concluded that “the material is very good for

low-power applications” but “at higher current densities

there is a reversible decrease in capacity that... is associated

with the movement of a two-phase interface” between

LiFePO4 and FePO4. Ironically, over the next decade, in

nanoparticle form, LFP became the most popular high-

power cathode material for Li-ion batteries.2�4 Explaining

this reversal of fortune turned out to be a major scientific

challenge, with important technological implications.

It is now understood that phase separation is strongly

suppressed in LFP nanoparticles, to some extent in

equilibrium5�8butespeciallyunderappliedcurrent,7,9�11 since

reaction limitation,12 anisotropic lithium transport,13�16 elastic

coherency strain,7,17�19 and interfacial energies8,9,20,21 are all

enhanced. At low currents, anisotropic nucleation and growth

can also occur,7�9,12,22 as well as multiparticle mosaic

instabilities.23�26 These complex phenomena cannot be

described by traditional battery models,27,28 which assume a

spherical “shrinking core” phase boundary.29,30

This Account summarizesmy struggle to develop a phase-

field theory of electrochemical kinetics6�9,12,19,26,33�35 by

combining charge-transfer theory36 with concepts from sta-

tistical physics37 and nonequilibrium thermodynamics.38�40

It all began in 2006 when my postdoctoral associate, Gogi

Singh, found the paper of Chen et al.31 revealing striped

phase boundaries in LFP, looking nothing like a shrinking

core and suggesting phase boundary motion perpendicular

to the lithium flux (Figure 1). It occurred to me that, at such a

surface, intercalation reactionsmust be favored on the phase

boundary in order to preserve the stable phases, but this

could not be described by classical kinetics proportional to

concentrations. Somehow the reaction rate had to be sensi-

tive to concentration gradients.

As luck would have it, I was working onmodels of charge

relaxation in concentrated electrolytes using nonequili-

brium thermodynamics,35,41 and this seemed like a natural

starting point. Gerbrand Ceder suggested adapting the

Cahn�Hilliard (CH) model for LFP,42 but it took several years

to achieve a consistent theory. Our initial manuscript43 was

rejected in 2007, just after Gogi left MIT and I went on

sabbatical leave to ESPCI, faced with rewriting the paper.12

The rejection was a blessing in disguise, since it made

me think harder about the foundations of chemical kinetics.

The paper contained some new ideas, phase-field chemical

kinetics and intercalation waves, that, the reviewers

felt, contradicted the laws of electrochemistry. It turns out

the basic concepts were correct, but Ken Sekimoto and

David Lacoste at ESPCI helped me realize that my initial

Cahn�Hilliard reaction (CHR) model did not uphold the

De Donder relation.37 In 2008 in Paris, I completed the

theory, prepared lecture notes,33 published generalized

Butler�Volmer kinetics35 (section 5.4.2) and formulated

nonequilibrium thermodynamics for porous electrodes26

(see also Sekimoto37).

Phase-field kinetics represents a paradigm shift in chemi-

cal physics, which my group has successfully applied to

Li-ion batteries. Damian Burch6 used the CHRmodel to study

intercalation in nanoparticles, andhis thesis25 included early

simulations of “mosaic instability” in collections of bistable

particles.23,24 Simulations of galvanostatic discharge by

Peng Bai and Daniel Cogswell led to the unexpected predic-

tion of a critical current for the suppression of phase

separation.9 Liam Stanton modeled anisotropic coherency

strain,19 which Dan added to our LFP model,7 along with

FIGURE 1. Motivation to generalize charge-transfer theory. Observations by (a) Chen et al.31 and (b) Ramana et al.32 of separated FePO4 and LiFePO4

phases on the active {010} facet, which suggest (c) focusing of lithium intercalation reactions on the phase boundary, so it propagates as an
“intercalation wave”12 (or “domino cascade”15). From refs 12, 31, and 32.
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surface wetting.8 Using material properties from ab initio

calculations, Dan predicted phase behavior in LFP7 and

the critical voltage for nucleation8 in excellent agreement

with experiments. Meanwhile, Todd Ferguson26 did the first

simulations of phase separation in porous electrodes, pav-

ing the way for engineering applications.

What follows is a general synthesis of the theory and a

summary of its key predictions. A thermodynamic frame-

work is developed for chemical kinetics, whose application

to charge transfer generalizes the classical Butler�Volmer

and Marcus equations. The theory is then unified with

phase-field models and applied to Li-ion batteries.

Reactions in Concentrated Solutions
Generalized Kinetics. The theory is based on chemical

thermodynamics. In an open system, the chemical potential

of species i (per particle),

μi ¼ kBT ln ai þ μΘi ¼ kBT ln ~ci þ μexi (1)

is defined relative to a standard state (Θ) of unit activity

(ai = 1) and concentration ci = ci
Θ, where ~ci = ci/ci

Θ is the

dimensionless concentration. The activity coefficient,

γi ¼ e(μ
ex
i � μΘi )=(kBT ) (2)

is a measure of nonideality (ai = γi~ci). In a dilute solution,

μi
ex = μi

Θ and γi = 1. For the general chemical reaction,

S1 ¼ ∑
r
srAr f ∑

p
spBp ¼ S2 (3)

the equilibrium constant is

KΘ ¼ a2
a1

� �eq

¼ e(μ
Θ
1 � μΘ2 )=(kBT ) (4)

where a1 =
Q

rar
sr, a2 =

Q
pap

sp, μ1
Θ = ∑rsrμr

Θ and μ2
Θ = ∑pspμp

Θ.

The theory assumes that departures from equilibriumobey

linear irreversible thermodynamics (LIT).38,39 The flux of spe-

cies i is proportional to the thermodynamicdriving force,�rμi:

Fi ¼ �Micirμi ¼ �Di rci þ cir
μexi
kBT

 !

¼ �Dchem
i rci (5)

whereMi is the mobility, Di =MikBT is the tracer diffusivity,

and Di
chem = Di(1 þ (∂ ln γi)/(∂ ln ci)) is the chemical

diffusivity.28 In eq 5, the first term represents random

fluctuations and the second drift in response to the thermo-

dynamic bias, �rμi
ex.

In a consistent formulation of reaction kinetics,33,37 there-

fore, the reaction complex explores a landscape of excess

chemical potential, μex(x) between local minima μ1
ex and μ2

ex

with transitions over an activation barrier μex (Figure 2a). For

rare transitions (μ‡
ex� μ1,2

ex . kBT), the reaction rate (per site) is

R ¼ k f ~c1 e�(μex
‡

� μex1 )=(kBT ) � k r ~c2 e�(μex
‡

� μex2 )=(kBT ) (6)

Enforcing detailed balance (R = 0) in equilibrium (μ1 = μ2)

yields the reaction rate consistent with nonequilibrium

thermodynamics:

R ¼ k0 (e
�(μex

‡
� μ1)=(kBT ) � e�(μex

‡
� μ2)=(kBT )) (7)

where k0 = kf = kr (for properly defined μ). Equation 7

upholds the De Donder relation,37

R f

R r
¼ KΘa1

a2
¼ e(μ1 � μ2)=(kBT ) (8)

which describes the steady state of chemical reactions in

open systems.44

The thermodynamic driving force is

Δμ ¼ μ2 � μ1 ¼ kBT ln
a2

KΘa1
¼ ΔG (9)

FIGURE 2. (a) Landscape of excess chemical potential explored by
the reaction S1 f S2. (b) Adsorption from a liquid, where the transition
state (TS) excludes multiple surface sites (s > 1) while shedding the
first-neighbor shell. (c) Solid diffusion on a lattice, where the transition
state excludes two sites.
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alsodenotedasΔG, the freeenergyof reaction.The reaction

rate eq 7 can be expressed as a nonlinear function of Δμ:

R ¼ R0(e�RΔμ=(kBT ) � e(1 � R)Δμ=(kBT )) (10)

where R, the symmetry factor or generalized Brønsted

coefficient,36 is approximately constant with 0 < R < 1 for

many reactions. Defining the activity coefficient of the

transition state, γ‡, by

μex‡ ¼ kBT ln γ‡ þ (1 � R)μΘ1 þRμΘ2 (11)

the exchange rate R0 takes the form

R0 ¼ k0a11 � Ra2R

γ‡
¼ k0~c1

1 � R~c2
R γ1

1 � Rγ2
R

γ‡

 !
(12)

where the term in parentheses is the thermodynamic

correction for a concentrated solution.
Example: Surface Adsorption. Let us apply the formal-

ism to Langmuir adsorption, Af Aads, from a liquid mixture

with μ1 = kBT ln a (Figure 2b). The surface is an ideal solution

of adatoms and vacancies,

μ2 ¼ kBT ln
~c

1 � ~c
þ Eads (13)

with coverage ~c = c/cs, site density cs, and adsorption

energy Eads = μ2
Θ � μ1

Θ. Equilibrium yields the Langmuir

isotherm,

~ceq ¼ KΘa
1þKΘa

, KΘ ¼ e�Eads=(kBT ) (14)

If the transition state excludes s surface sites,

μex‡ ¼ �skBT ln(1 � ~c)þ E‡ (15)

then eq 7 yields

R ¼ k1(1 � ~c)s�1[KΘa(1 � ~c) � ~c] (16)

where k1 = k0 e(Eads�E‡)/(kBT) and E‡ is the transition state

energy relative to the bulk. With only configurational

entropy, we recover standard kinetics of adsorption, Asol þ
sV f Asurf þ (s � 1)V, involving s vacancies. With attractive

forces, however, eq 7 predicts novel kinetics for inhomoge-

neous surfaces undergoing condensation (below).
Example: Solid Diffusion.We can also derive the LIT flux,

eq 5, for macroscopic transport in a solid by activated

hopping between adjacent minima of μex having slowly

varying chemical potential, |Δμ| , kBT and concentration

Δ~c , 1. Linearizing the hopping rate,

R � �R0Δμ

kBT
, R0 � k0~cγ

γ‡
(17)

over a distance Δx through an area ΔyΔz with ∂μ/∂x ≈
Δμ/Δx, we obtain eq 5 with

D
D0

¼ γ

γ‡
(18)

where D0 = k0Δx/(c
ΘΔyΔz). Equation 18 can be used to

derive the tracer diffusivity in a concentrated solid solu-

tion by estimating γ‡ consistent with γ. For example, for

diffusion on a lattice (Figure 2c) with γ = (1 � ~c)�1, the

transition state excludes two sites, γ‡ = (1 � ~c)�2; the

tracer diffusivity, D = D0(1 � ~c), scales with the mean

number of empty neighboring sites, but the chemical

diffusivity is constant, Dchem = D0 = D(0) (particle/hole

duality).

Electrochemistry in Concentrated Solutions
Electrochemical Thermodynamics. Next we apply eq 7

to the general Faradaic reaction,

S1 ¼ ∑
i
si, OO

zi,O
i þ ne� f ∑

j
sj, RR

zj, R
j ¼ S2 (19)

converting the oxidized stateOzO = ∑isi,OOi
zi,O to the reduced

state RzR = ∑jsj,RRj
zj,R while consuming n electrons. Let μ1 = μOþ

nμe = ∑isi,Oμi,Oþ nμe and μ2 = μR = ∑jsj,Rμj,R. Charge conserva-

tion implies zO � n = zR where zO = ∑isi,Ozi,O and zR = ∑jsj,Rzj,R.

The electrostatic energy, zieφi, is added to μi
ex to define the

electrochemical potential,

μi ¼ kBT lnai þ μΘi þ zieφi ¼ kBT ln~ci þ μexi (20)

where zie is the charge and φi is the Coulomb potential of

mean force.
The electrostatic potential is φe in the electrode and φ in the

electrolyte. Thedifference is the interfacial voltage,Δφ=φe�φ.

The mean electric field�rφ at a point is unique, so φi = φe for

ions in the electrode and φi = φ for those in the electrolyte

solution. In the most general case of a mixed ion-electron

conductor, the reduced and oxidized states are split across the

interface (Figure3a). Charge conservation implies zOeþ zOs� n=

zReþ zRs, and thenet chargence transferred from the solution

to the electrode is given by nc = zOs � zRs = zRe � zOe þ n.
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Let us assume that ions only exist in the electrolyte

(zRe = zOe = 0, nc = n) since the extension to mixed ion-

electron conductors is straightforward. For redox reactions

(Figure 3b), for example, Fe3þþ e�f Fe2þ, the reduced state

is in the solution at the same potential, φR = φO = φ. For

electrodeposition (Figure 3c), for example, Cu2þþ 2e�f Cu,

or ion intercalation as a neutral polaron, for example, CoO2 þ
Liþþ e�fLiCoO2, the reduced state isuncharged, zR=0, sowe

can also set φR = φ, even though it is in the electrode. For this

broad class of Faradaic reactions, we have

μO ¼ kBT ln aO þ μΘO þ zOeφ (21)

μR ¼ kBT ln aR þ μΘR þ zReφ (22)

μe ¼ kBT ln ae þ μΘe � eφe (23)

(aO ¼ Q
i
asii , μ

Θ
O ¼ ∑

i
siμΘi ) where μe is the Fermi level,

which depends on φe and the electron activity ae = γe~ce.
In equilibrium (μ1 = μ2), the interfacial voltage is given by

the Nernst equation

Δφeq ¼ EΘ þ kBT
nce

ln
aOaen

aR
(24)

where nc = n and

EΘ ¼ μΘO þ nμΘe � μΘR
ne

(25)

is the standard half-cell potential. Out of equilibrium, the

current I = neR (per active site) is controlled by the

activation overpotential,

η ¼ Δφ �Δφeq ¼ Δμ

ne
¼ ΔG

ne
(26)

Specific models of charge transfer correspond to different

choices of μ‡
ex.

Generalized Butler�Volmer Kinetics. The standard phe-

nomenological model of electrode kinetics is the Butler�
Volmer equation,28,45

I ¼ I0(e�Rcneη=(kBT ) � eRaneη=(kBT )) (27)

where I0 is the exchange current. For a single-step charge-

transfer reaction, the anodic and cathodic charge-transfer

coefficients Ra and Rc satisfy Ra = 1� R and Rc = Rwith a

symmetry factor 0 < R < 1. The exchange current is

typicallymodeled as I0� cO
RacR

Rc, but this is a dilute solution

approximation.
In concentrated solutions, the exchange current is af-

fected by configurational entropy andenthalpy, electrostatic

correlations, coherency strain, and other nonidealities. For

Li-ion batteries, only excluded volume has been considered,

using27,28 I0(c) � (cs � c)RccRa. For fuel cells, many phenom-

enological models have been developed for electrocatalytic

reactions with surface adsorption steps.46�48 Electrocataly-

sis can also be treated by our formalism,33 but here we focus

on the elementary charge-transfer step and its coupling to

phase transformations, which has no prior literature.

In order to generalize BV kinetics (Figure 4), wemodel the

transition state

μex‡ ¼ kBT ln γ‡ þ (1 � R)(zOeφ � neφe þμΘO þ nμΘe )þR(zReφþμΘR )

(28)

FIGURE 4. Landscape of excess chemical potential explored by the
Faradaic reaction O þ ne� f R in Nernst equilibrium (blue) and after a
negative overpotential η = (μ2 � μ1)/(ne) is applied (red) to favor
reduction, as illustrated below.

FIGURE 3. Types of Faradaic reactions O þ ne� f R. (a) General mixed
ion-electron conductor electrode/electrolyte interface. (b) Redox in
solution. (c) Ion intercalation or electrodeposition.
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by averaging the standard chemical potential and elec-

trostatic energy of the initial and final states, which

assumes a constant electric field across the reaction

coordinate x with R = (x‡ � xR)/(xO � xR). Substituting

eq 28 into eq 7 using eq 24, we obtain eq 27 with

I0 ¼ k0ne(aOaen)
1 � RaRR

γ‡

¼ k0ne(~cO~ce
n)1 � R~cR

R (γOγe
n)1 � RγR

R

γ‡

" #
(29)

The factor in brackets is the thermodynamic correction

for the exchange current.
GeneralizedBVkinetics (eqs 27 and29) consistently applies

chemical kinetics in concentrated solutions (eqs 10 and 12,

respectively) to Faradaic reactions. In Li-ion battery models,

Δφeq(c) is fitted to theopen circuit voltage, and I0(c) andD
chem(c)

are fitted to discharge curves,27,29,30 but these quantities

are related by nonequilibrium thermodynamics.9,26,35 Lai and

Ciucci49,50also recognized this inconsistencyandusedeqs5and

24 in battery models, but they postulated a barrier of total

(not excess) chemical potential, in contrast to eq 7, eq 29, and

charge-transfer theory.

Generalized Marcus Kinetics. The microscopic theory of

charge transfer, initiated byMarcus52,53 and honored by the

Nobel Prize in Chemistry,54 provides justification for the BV

equation and a means to estimate its parameters based on

solvent reorganization.45 Quantum mechanical formula-

tions pioneered by Levich, Dogonadze, Marcus, Kuznetsov,

and Ulstrup further account for Fermi statistics, band struc-

ture, and electron tunneling.36 Most theories, however,

make the dilute solution approximation by considering an

isolated reaction complex.

In order to extend Marcus theory for concentrated solu-

tions, our basic postulate (Figure 5) is that the Faradaic

reaction eq 19 occurs when the excess chemical potential

of the reduced state, deformed along the reaction coordi-

nate by statistical fluctuations, equals that of the oxidized

state (plus n electrons in the electrode) at the same point.

(More precisely, charge transfer occurs at slightly lower

energies due to quantum tunneling.36,45) Following Marcus,

we assume harmonic restoring forces for structural relaxa-

tion (e.g., shedding of the solvation shell from a liquid or ion

extraction from a solid) along the reaction coordinate x from

the oxidized state at xO to the reduced state at xR:

μex1 (x) ¼ μΘO þ nμΘe þ kBT ln(γOγe
n)þ zOeφ � neφe þ

kO
2

(x � xO)
2 (30)

μex2 (x) ¼ μΘR þ kBT ln γR þ zReφþ kR
2
(x � xR)

2 (31)

The Nernst equation, eq 24, follows by equating the total

chemical potentials at the local minima, μ1(xO) = μ2(xR) in

equilibrium. The free energy barrier is set by the intersection

of theexcess chemicalpotential curves,μ‡
ex=μ1

ex(x‡) =μ2
ex(x‡),

which determines the barrier position, x = x‡, and implies

ΔGex ¼ μex2 (xR) � μex1 (xO) ¼ kO
2

(x‡ � xO)
2 � kR

2
(x‡ � xR)

2 (32)

where ΔGex is the excess free energy change per reaction.
From eq 26, the overpotential is the total free energy

change per charge transferred,

neη ¼ ΔG ¼ ΔGex þ kBT ln
~cR

~cO~ce
n (33)

In classical Marcus theory,45,54 the overpotential is de-

fined by neη = ΔGex without the concentration factors

required by nonequilibrium thermodynamics, which is

FIGURE 5. (top) The Faradaic reaction O þ ne� f R in concentrated
solutions. Each state explores a landscape of excess chemical potential μex.
Charge transfer occurs where the curves overlap, or just below, by
quantum tunneling (dashed curves). (bottom) Example of ion
intercalation into a solid electrode from a liquid electrolyte.
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valid for charge-transfer reactions in bulk phases (A� þ
BfAþ B�) because the initial and final concentrations are

the same, and thusΔG=ΔGex =ΔG� (standard free energy

of reaction). For Faradaic reactions at interfaces, however,

the concentrations of reactions and products are different,

and eq33must be used. Themissing “Nernst concentration

term” in eq 33 has also been noted by Kuznetsov and

Ulstrup (p 219 of ref 36).
In order to relate μ‡

ex toΔGex, we solve eq 32 for x‡. In the

simplest approximation, kO = kR = k, the barriers for the

cathodic and anodic reactions,

ΔGex
c ¼ μex‡ � μex1 (xO) ¼ λ

4
1þΔGex

λ

� �2

(34)

ΔGex
a ¼ μex‡ � μex2 (xR) ¼ λ

4
1 �ΔGex

λ

� �2

(35)

are related to the reorganization energy, λ= (k/2)(xO� xR)
2.

These formulas contain the famous “inverted region”

predicted by Marcus for isotopic exchange,54 where

(say) the cathodic rate, kc � e�ΔGc
ex

/(kBT) reaches a mini-

mum and increases again with decreasing driving force

ΔGex, for x‡ < xR in Figure 5a. This effect remains for

charge transfer in concentrated bulk solutions, for exam-

ple, A� þ Bf Aþ B�. For Fardaic reactions, however, it is

suppressed at metal electrodes, since electrons can tun-

nel through unoccupied conduction-band states, but can

arise in narrow-band semiconductors.36,53,54

Substituting μ‡
ex into eq 7, we obtain

R ¼ k0 e�λ=(4kBT ) e�(ΔGex)2=(4kBTλ) (~cO~ce
n e�ΔGex=(2kBT )

� ~cR eΔG
ex=(2kBT )) (36)

Using eq 33, we can relate the current to the overpotential,

I ¼ I0 e�(neη)2=(4kBTλ)(e�Rneη=(kBT ) � e(1 � R)neη=(kBT )) (37)

via the exchange current,

I0 ¼ nek0 e�λ=(4kBT )(~cO~ce
n)(3 � 2R)=4~cR

(1þ2R)=4 (38)

and symmetry factor,

R ¼ 1
2

1þ kBT
λ

ln
~cO~ce

n

~cR

 !
(39)

In the typical case λ . kBT, the current eq 37 is well

approximatedby theBVequationwithR=1/2atmoderate

overpotentials, |η| > (kBT/(ne))(λ/(kBT))
1/2, and nondepleted

concentrations, |ln ~c|, (λ/(kBT)).

Comparing eq38with eq29 forR≈1/2,we can relate the

reorganization energy to the activity coefficients defined

above

λ � 4kBT ln
γ‡

(γOγenγR)
1=2

(40)

For a dilute solution, the reorganization energy λ0 can

be estimated by the classical Marcus approximation,

λ0 = λi þ λo, where λi is the “inner” or short-range

contribution from structural relaxation (sum over normal

modes) and λo is the “outer” or long-range contribution

from the Born energy of solvent dielectric relaxation.54,45

For polar solvents at room temperature, the large Born

energy, λo > 0.5n2 eV ≈ 20n2kBT (at room temperature),

implies that single-electron (n = 1), symmetric (R ≈ 1/2)

charge transfer is favored.Quantummechanical approxima-

tions of λ0 are also available.36 For a concentrated solution,

we can estimate the thermodynamic correction, γ‡
c, for the

entropy and enthalpy of the transition state and write

γ‡ ¼ γc‡ e
λ0=(4kBT ) (41)

which can be used in either Marcus (eqs 37�40) or BV

(eqs 27�29) kinetics. An example for ion intercalation is

given below, eq 81, but first we need to develop a

modeling framework for chemical potentials.

Nonequilibrium Chemical Thermodynamics
General Theory. In homogeneous bulk phases, activity

coefficients depend on concentrations, but for reactions at

an interface, concentration gradients must also play a role

(Figure 1). The main contribution of this work has been to

formulate chemical kinetics for inhomogeneous, nonequilib-

rium systems. The most general theory appears here for the

first time, building on my lectures notes.33

The theory is based on the Gibbs free energy functional

G[fcig] ¼
Z
V

g dV þ
I
A
γs dA ¼ Gbulk þGsurf (42)

with integrals over the bulk volume V and surface area A.

The variational derivative,55

δG
δci

(x) ¼ lim
ε f 0

G[ci(y)þ εδε(y � x)] �G[ci(y)]
ε

(43)

is the change in G to add a “continuum particle” δ(y�x) of

species i at point x, where δε(z) f δ(z) is a finite-size
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approximation for a particle that converges weakly

(in the sense of distributions) to the Dirac delta function,

for example, δε(z) = e�z2/(2ε)/
ffiffiffiffiffiffiffiffi
2πε

p
. This is the consistent

definition of diffusional chemical potential,39,56

μi ¼
δG
δci

(44)

If g depends on {ci} and {rci}, then

μi ¼
Dg
Dci

�r 3
Dg
Drci

(45)

The continuity of μi at the surface yields the “natural

boundary condition”,

n̂ 3
Dg
Drci

¼ Dγs
Dci

(46)

We can also express the activity variationally,

ai ¼ exp
1

kBT
δGmix

δci

� �
(47)

in terms of the free energy of mixing

Gmix ¼ Gbulk � ∑
i
μΘi

Z
V
ci dV (48)

which we define relative to the standard states of

each species.
The simplest approximation for an inhomogeneous sys-

tem is the Cahn�Hilliard56 (or Landau�Ginzburg, or van der

Waals57) gradient expansion,

g ¼ g(fcig)þ ∑
i

μΘi ci þ
1
2 ∑j

r~ci 3 Kijr~cj

0
@

1
A (49)

for which

μi � μΘi ¼ kBT lnai ¼ Dg
Dci

� ∑
j
r 3 Kijr

~cj
cΘj

(50)

where g is the homogeneous free energy of mixing

and where κij is a 2nd rank anisotropic tensor penalizing

gradients in components i and j. (Higher-order derivative

terms can also be added.58,59)
With these definitions, eq 7 takes the variational form,

R ¼ k0 e�μex
‡
=(kBT ) exp ∑

r

sr
kBT

δG
δcr

 !"

� exp ∑
p

sp
kBT

δG
δcp

 !#
(51)

for the general reaction, eq 3, in a concentrated solution.

This is the fundamental expressionof thermally activated

reaction kinetics that is consistent with nonequilibrium

thermodynamics. The reaction rate is a nonlinear func-

tion of the thermodynamic driving force,

Δμ ¼ ∑
p

sp
δG
δcp

� ∑
r
sr
δG
δcr

(52)

This is the most general, variational definition of the free

energy of reaction. For |Δμ| , kBT, the rate expression (51)

can be linearized as

R ∼ � kΔμ, k ¼ k0e
�μex

‡
=kBT

kBT
(53)

but more generally, the forward and backward rates have

exponential, Arrhenius dependence on the chemical po-

tential barriers. The variational formulation of chemical

kinetics, eq 51, can be applied to any type of reaction

(Figure 6), as we now explain.
Heterogeneous Chemistry. At an interface, eq 51 pro-

vides a new reaction boundary condition6,9,12,35

siArn̂ 3 uBci � Dici
kBT

rδG
δci

� �
¼ (R

δG
δcj

� � !
(54)

(þ for reactants,� for products; Ar = reaction site area) for

the Cahn�Hilliard (CH) equation,39

Dci
Dt

þuB 3rci ¼ r 3
Dici
kBT

rδG
δci

� �
(55)

expressing mass conservation for the LIT flux, eq 5, with

convection in a mean flow uB. For thermodynamic con-

sistency, Di is given by eq 18, which reduces eq 55 to the

“modified”CHequation58 in an idealmixture.26 This is the

“Cahn�Hilliard reaction (CHR) model”.

FIGURE 6. Types of reactions (R) in nonequilibrium chemical
thermodynamics. (a) Heterogeneous chemistry at a surface, eq 54.
(b) Homogeneous chemistry, eq 56, with diffusing species. (c) phase
transformations or homogeneous reactionswith immobile species, eq 58.
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Homogeneous Chemistry. For bulk reactions, eq 51 pro-

vides a new source term for the CH equation,

Dci
Dt

þ uB 3rci ¼ r 3
Dici
kBT

rδG
δci

� �
-
cs
si
R

δG
δcj

� � !
(56)

(cs = reaction sites/volume). The Allen�Cahn equation39

(AC) corresponds to the special case of an immobile reactant

(Di = 0, uB = 0) evolving according to linear kinetics, eq (53),

although theexchange-rate prefactor k is usually taken tobe

constant, in contrast to our nonlinear theory. Equation 56 is

the fundamental equation of nonequilibrium chemical ther-

modynamics. It unifiesandextends theCHandACequations

via a consistent set of reaction-diffusion equations based on

variational principles. Equation 54 is its integrated form for a

reaction localized on a boundary.
Phase Transformations. In the case of an immobile

reactantwith twoormore stable states, our general reaction-

diffusion equation, eq 56, also describes thermally activated

phase transformations. The immobile reactant concentra-

tion acts as a non-conserved order parameter, or phase field,

representing different thermodynamic states of the same

molecular substance. For example, if g(c) has two local

equilibrium states, cA and cB, then

ξ ¼ c � cA
cA � cB

(57)

is a phase field with minima at ξ = 0 and ξ = 1 satisfying

Dξ
Dt

¼ R
δG
δξ

� �
(58)

This is the “Allen�Cahn reaction (ACR) model”, which is a

nonlinear generalization of the AC equation for chemical

kinetics.7,9,12,33

Example: Adsorption with Condensation. To illustrate

the theory, we revisit surface adsorption with attractive forces,

strong enough to drive adatom condensation (separation

into high- and low-density phases) on the surface.33

Applications may include water adsorption in concrete60

or colloidal deposition in electrophoretic displays.61 Fol-

lowing Cahn and Hilliard,56 the simplest model is a regular

solution of adatoms and vacancies with pair interaction

energy Ω,

g ¼ csfkBT [~c ln ~c þ (1 � ~c) ln(1 � ~c)]þΩ~c(1 � ~c)

þ Eads~cgþK
2
jr~cj2 (59)

μ ¼ kBT ln
~c

1 � ~c
þΩ(1 � 2~c)þ Eads � K

cs
r~2~c (60)

Below the critical point, T < Tc = Ω/(2kB), the enthalpy of

adatom attraction (third term, favoring phase separation
~c = 0, 1) dominates the configurational entropy of ada-

toms and vacancies (first two terms, favoring mixing ~c =

1/2). The gradient term controls spinodal decomposition

and stabilizes phase boundaries of thickness λb =

(κ/(csΩ))1/2 and interphasial tension γb = (κcsΩ)1/2. Using

eq15 tomodel the transition statewith oneexcluded site,

s = 1, the ACRmodel, eq 58, takes the dimensionless form,

D~c
D~t

¼ KΘa(1 � ~c) � ~c exp(Ω~(1 � 2~c)� K~r~2~c) (61)

where ~t = k1t, Ω
~ = Ω/(kBT) = 2Tc/T, κ~ = κ/(L2cskBT) and

r~= Lr (with length scale L). This nonlinear PDE describes

phase separation coupled to adsorption at an interface

(Figure 7), controlled by the reservoir activity a. It resem-

bles a reaction-diffusion equation, but there is no diffu-

sion; instead, �κ~r~2~c is a gradient correction to the

chemical potential, which nonlinearly affects the adsorp-

tion reaction rate. With modifications for charge transfer

and coherency strain, a similar PDE describes ion inter-

calation in a solid host, driven by an applied voltage.

FIGURE 7. Surface adsorption with condensation when an empty surface is brought into contact with a reservoir (μres = μ1 = kBT ln a > Eads =�kBT ln
KΘ). (left) Homogeneous chemical potential of the adsorbed species μ. (right) (A) Early stage uniform adsorption and (B) late-stage adsorption waves
nucleated at edges, where the reaction is focused on advancing boundaries of the condensed phase.
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Nonequilibrium Thermodynamics of
Electrochemical Systems

Background. We thus return to our original motivation,

phase separation in Li-ion batteries (Figure 1). Three impor-

tant papers in 2004 set the stage: Garcia et al.62 formulated

variational principles for electromagnetically active systems,

which unify the CH equation with Maxwell's equations;

Guyer et al.64 represented the metal/electrolyte interface

with a continuous phase field ξ evolving by AC kinetics;

Han et al.42 used the CH equation to model diffusion in LFP,

leading directly to this work.

When the time is ripe for a new idea, a number of scientists

naturally think along similar lines. As described in the Introduc-

tion, my group first reported phase-field kinetics (CHR and

ACR)12,43 and modified Poisson�Nernst�Planck (PNP) equa-

tions41 in 2007, the generalized BV equation35 in 2009, and

the complete theory9,33 in 2011. Independently, Lai and Ciucci

also applied nonequilibrium thermodynamics to electroche-

mical transport49butdidnotdevelopavariational formulation.

Theyproceeded togeneralizeBVkinetics50,51 (citingSinghet al.12)

but used μ in place of μex and neglected γ‡
ex. Tang et al.65

were the first to apply CHR to ion intercalation with coher-

ency strain, but like Guyer et al.,64 they assumed linear AC

kinetics. Recently, Liang et al.66 published the BV�ACR

equation, claiming that “in contrast to all existing phase-field

models, the rate of temporal phase-field evolution... is

considered nonlinear with respect to the thermodynamic

driving force”. They cited my work6,7,9,12 as a “boundary

condition for a fixed electrode�electrolyte interface” (CHR)

but overlooked the same BV�ACR equation for the depth-

averaged ion concentration,9,12 identified as a phase field

for an open system.7,9 They also set I0 = constant, which

contradicts chemical kinetics (see below).

Variational Electrochemical Kinetics. We now apply

phase-field kinetics to charged species. The Gibbs free

energy of ionicmaterials can bemodeled as:6,7,9,12,59,62,63,67

G ¼ Gmix þGelec þGsurf þ ∑
i
μΘi

Z
V
ci dV (62)

Gmix ¼
Z
V
f (cB) dV þGgrad (63)

Ggrad ¼ 1
2

Z
V
(r ~cBB 3 Kr ~cBB �rφ 3 εprφþ σ : ε) dV (64)

Gelec ¼
Z
V
Feφ dV þ

I
A
qsφ dA (65)

where Ggrad is the free energy associated with all gradi-

ents; Gelec is the energy of charges in the electrostatic

potential of mean force, φ; cB is the set of concentrations

(including electrons for mixed ion/electron conductors);

f is the homogeneous Helmholtz free energy density, Fe
and qs are the bulk and surface charge densities; εp is the

permittivity tensor; and σ and ε are the stress and strain

tensors. The potential φ acts as a Lagrange multiplier

constraining the total ion densities7,62 while enforc-

ing Maxwell's equations for a linear dielectric material

(δG/δφ = 0),

�r 3 εprφ ¼ Fe ¼ ∑
i
zieci (66)

� n̂ 3 εprφ ¼ qs (67)

The permittivity can be a linear operator, for example,

εp= ε0 1 � l c2r2
� �

, toaccount for electrostatic correlations

in ionic liquids59 and concentrated electrolytes35,68 (as first

derived for counterion plasmas69,70). Modified PNP equa-

tions35,41,49,50 correspond to eqs 55 and 66.
For elastic solids, the stress is given by Hooke's

law, σij = Cijklεkl, where C is the elastic constant tensor.

The coherency strain,

εij ¼ 1
2

Dui
Dxj

þ Duj
Dxi

 !
� ∑

m
ε0ijm~cm (68)

is the total strain due to compositional inhomogeneity

(first term) relative to the stress-free inelastic strain

(second term), which contributes to Gmix. In a mean-

field approximation (Vegard's law), each molecule

of species m exerts an independent strain εm
0

(lattice misfit between ~cm = 0, 1 with cm
Θ = cs). Since

elastic relaxation (sound) is faster than diffusion

and kinetics, we assume mechanical equilibrium,

δG/δuB = r 3 σ = 0.
For Faradaic reactions, eq 19, the overpotential is the

thermodynamic driving force for charge transfer,

neη ¼ ∑
j
sj, R

δG
δcj, R

� ∑
i
si, O

δG
δci, O

� n
δG
δce

(69)

determined by the electrochemical potentials, μi= δG/δci.

For thermodynamic consistency, the diffusivities, eq 18,

Nernst voltage, eq 24, and exchange current, eq 29, must

depend on cB, rcB, and σ via the variational activities,

eq 47, given by

kBT lnai ¼ Df
Dci

�r 3 Kr~ci þ σ : ε0i
cs

�rφ 3
Dεp
Dci

rφ (70)
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for the ionic model above. The Faradaic current density is

I ¼ I0F
neη
kBT

� �
(71)

where

F (η~) ¼ e�Rη~ � e(1 � R)η~ Butler�Volmer
e�η~ 2=(4λ~ )(e�Rη~ � e(1 � R)η~ ) Marcus

�
(72)

and I0 is given by either eq 29 or eqs 38�41, respectively

(λ~ = λ/(kBT )). The charge-transfer rate, R = I/(ne), defines

the CHR andACRmodels, eqs 54�58, for electrochemical

systems.
Example: Metal Electrodeposition. In models of electro-

deposition63,64 and electrokinetics,71 the solid/electrolyte

interface is represented by a continuous phase field, ξ, for

numerical convenience (to avoid tracking a sharp interface). If

the phase field evolves by reactions, however, it has physical

significance as a chemical concentration. For example,

consider electrodeposition, Mnþ þ ne� f M, of solid metal

M from a binary electrolyte MþA� with dimensionless

concentrations, ξ = ~c = c/cs and ~c( = c(/c0, respectively.

(The classical “phase field” is ξ = ~c.) In order to separate the

metal from the electrolyte, we postulate

f ¼ W [h(~c)þ ~c(~c þ þ ~c �)]þ fion(~c þ , ~c �) (73)

withW. kBT, where h= ~c2(1� ~c)2 is an arbitrary double-

welled potential. For a dilute electrolyte, fion = kBT(~cþ ln
~cþ þ ~c� ln ~c�), without phase separation,67 we include

gradient energy only for the metal. The activities, eq 70,

for reduced metal

cskBT lna ¼ W [h0(~c)þ ~c þ þ ~c �] � Kr2~c � Dεp
D~c

jrφj2

(74)

and metal cations

c0kBT lnaþ ¼ W~c þ kBT ln~c þ � Dεp
D~c þ

jrφj2 (75)

define the current density eq 71 via

I0 ¼ K0aR(aþ aen)
1�R, K0 ¼ nek0cs

γ‡
(76)

η ¼ kBT
ne

ln
a

aþ aen
� EΘ (77)

Note that the local potential for electrons and ions is

unique (φ = φe, Δφ = 0), but integration across the diffuse

interface yields the interfacial voltage.

TheACR equation, eq 58, for ξ= ~c using eqs 71�77differs

from prior phase-field models of electrodeposition.64,66

Equation 76 has the thermodynamically consistent depen-

dence on reactant activities (rather than I0 = constant).

Coupled with generalized PNP equations, eq 56, for ~c(, our

theory also describes Frumkin corrections to Butler�Volmer

kinetics72,73 and electro-osmotic flows35,71 associated with

double-layer diffuse charge. The permittivity εp(~c, ~c()

depends on the metal concentration, interpolating between

metal (εp
M, ~c =1) andbulk electrolyte (εp

b,~c =0) values63with a

minimum (εp
S, ~c ≈ 1/2) for the Stern layer,72 as well as the

ionic concentrations, εp� ε0(1þ Rþ~cþ þ R�~c�) where R( < 0

are the excess polarizabilities.74,75 Dielectric saturation in

large fields, εp(|rφ|), can also be included.35 The charge

density includes the conduction electrons and solid metal

ions, Fe = ze(cþ � c�) þ zMe(cM � ce). Neglecting band

structure variations, we can set ae = ~ce and aM = ~cM. The

theory thus predicts diffuse-charge profiles on both sides of

the interface, involving ions and electrons,76 during Faradaic

reactions.

Example: Ion Intercalation.Hereafter,weneglect double

layers and focus on solid thermodynamics. Consider cation

intercalation, Anþ þ B þ ne� f AB, from an electro-

lyte reservoir (aO = constant) into a conducting solid B

(ae = constant) as a neutral polaron (cR = c(x,t), zR = 0).

The overpotential eq 69 takes the simple form

neη ¼ δG
δc

� (μO þ nμe) ¼
δGmix

δc
þ neΔΦ (78)

where

ΔΦ ¼ Δφ � EΘ � kBT
ne

ln aOane (79)

is the interfacial voltage relative to the ionic standard

state. The equilibrium voltage is

neΔΦeq ¼ �kBT ln a ¼ �δGmix

δc
(80)

Note that potentials can be shifted for convenience: Bai

et al.9 and Ferguson and Bazant26 set μΘ = 0 for ions, so

μ = kBT ln a = δGmix/δc; Cogswell and Bazant7 defined

“Δφ” = ΔΦ and shifted g by �cΔΦ, so eη = δG/δc.
Our surfaceadsorptionmodel, eq59, canbeadapted for ion

intercalationby settingEa= eΔΦ. If the transition stateexcludes

s sites (where s > 1 could account for the Anþ solvation shell)

and has strain �ε‡, then its activity coefficient, eq 41, is

γ‡ ¼ (1 � ~c)�s exp(�σ~ : ε‡ þ λ~0=4) (81)
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where λ~0 = λ0/(kBT ) and σ~ = σ/(cskBT ). The exchange

current, eq 29, is

I0 ¼ nek(~c)~cR(1 � ~c)s�R exp(σ~ : ΔεþRΩ~ (1 � 2~c) � Rr~ 3 K~r~~c)
(82)

k(~c) ¼ k0cs(aþ ane(~c))
1�R e�λ~ 0=4 (83)

where aþ is the ionic activity in the electrolyte andΔε= ε‡�
Rε0 is the activation strain.77 For semiconductors, the elec-

tron activity ae = eΔEf/(kBT) depends on ~c, if the intercalated

ion shifts the Fermi level by donating an electron to the

conduction band, for example, ΔEf � (1 þ β~c)2/d for free

electrons in d dimensions (as in LiWO3 with d = 378).

Application to Li-Ion Battery Electrodes
Allen�Cahn Reaction Model. The three-dimensional

CHR model eqs 54�55 with current density I = neR given

by eqs 71 and 82 describes ion intercalation in a solid particle

from an electrolyte reservoir. In nanoparticles, solid diffusion

times (milliseconds to seconds) aremuch shorter than discharge

times, so a reaction-limited ACR model is often appropriate. In

the caseof LFPnanoparticles, strong crystal anisotropy leads to a

two-dimensionalACRmodelover theactive (010) facetbydepth

averagingoverNs sites in the [010] direction.
9,12 For particle sizes

below 100 nm, the concentration tends to be uniform in [010]

due to the fast diffusion13 (uninhibited by Fe anti-site

defects16) and elastically unfavorable phase separation.7

Using eqs 71 and 82 with isotropic κ~, ae = constant, ε‡ =

Rε0, R = 1/2, and s = 1, the ACR equation, eq 58, takes the

simple dimensionless form,7,9

D~c
D~t

¼ ~I0 F( μ~þΔΦ
~) (84)

μ~¼ ln
~c

1 � ~c
þΩ
~(1 � 2~c) � K~r~2

~c þ σ~: ε (85)

~I0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c(1 � ~c

p
) exp

1
2

Ω
~(1�2~c) � K~r~2~c
� �	 


(86)

where ΔΦ~ = neΔΦ/(kBT), ~t = Nskt. The total current

integrated over the active facet

~I(~t) ¼
Z
~A

D~c
D~t

d~x d~y (87)

is controlled while solving forΔΦ~(~t) (as in Figure 8) or vice

versa (where A~ is the dimensionless surface area of the

active facet).
Intercalation Waves and Quasi-Solid Solutions. The

theory predicts a rich variety of new intercalation mechan-

isms. A special case of the CHRmodel12 is isotropic diffusion-

limited intercalation27,28 with a shrinking-core phase

boundary,29,30 but the reaction-limited ACR model also

predicts intercalation waves (or “domino cascades”15),

sweeping across the active facet, filling the crystal layer by

layer (Figure 1c).7,9,12,34,65 Intercalation waves result from

spinodal decomposition or nucleation at surfaces9 and trace

out the voltage plateau at low current (Figure 8).

The theory makes other surprising predictions about elec-

trochemically driven phase transformations. Singh et al.12

showed that intercalation wave solutions of the ACR equation

only exist over a finite range of thermodynamic driving force.

Basedonbulk freeenergy calculations,Maliket al.10argued for

a “solid solution pathway” without phase separation under

applied current, butBai et al.9 used theBV�ACRmodel to show

that phase separation is suppressed by activation overpoten-

tial at high current (Figure 8), due to the reduced area for

FIGURE 8. Suppression of phase separation at constant current in a Li-ion battery nanoparticle (ACR model without coherency strain or surface
wetting).9 (a) Linear stability diagram for the homogeneous state versus dimensionless current,~I = I/I0 (~c = 0.5), and state of charge X. (b) Battery
voltage versusXwith increasing~I. (c) Concentration profiles, spinodal decomposition at~I =0.01 leading to intercalationwaves (Figure 1(c)), quasi-solid
solution at~I = 0.25, and homogeneous filling at ~I = 2.
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intercalationon thephaseboundary (Figure1c). Linear stability

analysis of homogeneous filling predicts a critical current,

on the order of the exchange current, above which phase

separation by spinodal decomposition is impossible. Below

this current, thehomogeneous state is unstableover a rangeof

concentrations (smaller than the zero-current spinodal gap),

but for large currents, the time spent in this region is too small

for complete phase separation. Instead, the particle passes

through a transient “quasi-solid solution” state, where its

voltage and concentration profile resemble those of a

homogeneous solid solution. When nucleation is possible

(see below), a similar current dependence is also observed.

For quantitative interpretation of experiments, it is essen-

tial to account for the elastic energy.7 Coherency strain is a

barrier to phase separation (Figure 9), which tilts the voltage

plateau (compared with Figure 8) and reduces the critical

current, far below the exchange current. An unexpected

prediction is that phase separation rarely occurs in situduring

battery operation in LFP nanoparticles, which helps to ex-

plain their high rate capability and extended lifetime.7,9

Phase separationoccurs at lowcurrents and canbeobserved

ex situ in partially filled particles (Figure 10). Crystal anisotropy

leads to striped phase patterns in equilibrium,17�19 whose

spacing is set by the balance of elastic energy (favoring short

wavelengths at a stress-free boundary) and interfacial energy

(favoring long wavelengths to minimize interfacial area).7

Stanton and Bazant19 predicted that simultaneous positive

and negative eigenvalues of ε0 make phase boundaries tilt

with respect to the crystal axes. In LFP, lithiation causes con-

traction in the [001] direction and expansion in the [100] and

[010] directions.31 Depending on the degree of coherency,

Cogswell and Bazant7 predicted phase morphologies in ex-

cellent agreement with experiments (Figure 10) and inferred

the gradient penalty κ and the LiFePO4/FePO4 interfacial

tension (beyond the reach of molecular simulations) from

the observed stripe spacing.

FIGURE 9. ACR simulations of galvanostatic discharge in a 100 nmLiXFePO4 nanoparticle.
7 As the current is increased, transient quasi-solid solutions

(images from the shaded region) transition to homogeneous filling for ~I > 0.1, as phase separation is suppressed.

FIGURE 10. Phase separation of a 500 nm particle of Li0.5FePO4 into Li-rich (black) and Li-poor phases (white) at zero current in ACR simulations,7

compared with ex situ experimental images.31,32 (a) Coherent phase separation with [101] interfaces. (b) Semicoherent phase separation, consistent
with observed {100} microcracks.31
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Driven Nucleation and Growth. The theory can also

quantitatively predict nucleation dynamics driven by che-

mical reactions. Nucleation is perhaps the least understood

phenomenon of thermodynamics. In thermal phase transi-

tions, such as boiling or freezing, the critical nucleus is

controlled by random heterogeneities, and its energy is

overestimated by classical spherical droplet nucleation theory.

Phase-field models address this problem but often lack suffi-

cient details to be predictive.

For battery nanoparticles, nucleation turns out to be more

tractable, in part because the current and voltage can bemore

precisely controlled than heat flux and temperature. More

importantly, the critical nucleus has a well-defined form, set

by the geometry, due to strong surface “wetting” of crystal

facets by different phases. Cogswell and Bazant8 showed that

nucleation in binary solids occurs at the coherent miscibility

limit, as a surface layer becomes unstable and propagates into

the bulk. The nucleation barrier, Eb =�eΔΦ is set by coherency

strain energy (scaling with volume) in large particles and

reduced by surface energy (scaling with area) in nanoparticles.

The barrier thus decays with the wetted area-to-volume

ratio, A/V, and vanishes at a critical size, below which nano-

particles remain homogeneous in the phase of lowest surface

energy.

The agreement between theory and experiment, without

fitting any parameters, is impressive (Figure 11). Using our

prior ACR model7 augmented only by ab initio calculated

surface energies (in eq 46), the theory is able to collapse Eb
data for LFP versusA/V, which lie either on the predicted line or

below (e.g., from heterogeneities, lowering Eb, or missing

the tiniest nanoparticles, lowering A/V).8 This resolves a

major controversy, since the data had seemed inconsistent

(Eb = 2.0�37mV), and some had argued for12,22,77 and others

against the possibility of nucleation (using classical droplet

theory).10 The new theory also predicts that the nucleation

barrier (Figure 11c) and miscibility gap (Figure 11d) vanish at

the same critical size, dc ≈ 22 nm, consistent with separate

Li-solubility experiments.11

Mosaic Instability andPorous Electrodes.These findings

have important implications for porous battery electrodes,

consisting of many phase-separating nanoparticles. The

prediction that small particles transform before larger ones

is counterintuitive (since larger particles have more nuclea-

tion sites) and opposite to classical nucleation theory. The

new theory could be used to predict mean nucleation and

growth rates in a simple statistical model77 that fits current

transients in LFP22 and guide extensions to account for the

particle size distribution.

FIGURE 11. (a) ACR simulation of galvanostatic nucleation in a realistic LFP nanoparticle shape (C3)76 with a 150 nm� 76 nm top (010) active facet.8

Surface “wetting” of the side facets by lithium nucleates intercalation waves that propagate across the particle (while bending from coherency strain)
after the voltage exceeds the coherentmiscibility limit. (b) Discharge plot indicating nucleation by fluctuations in voltage or composition.8 (c) Collapse
of experimental data for the nucleation voltage by the theory, without any fitting parameters.8 (d) Size dependence of themiscibility gap, fitted by the
theory.7
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Discrete, random transformations also affect voltage

transients. Using the CHRmodel6 for a collection of particles

in a reservoir, Burch25 discovered the “mosaic instability”,

whereby particles switch from uniform to sequential filling

after entering the miscibility gap. Around the same time,

Dreyer et al.23 published a simple theory of the same effect

(neglecting phase separation within particles) supported by

experimental observations of voltage gap between charge/

discharge cycles in LFP batteries (Figure 12c), as well as

pressure hysteresis in ballon array.24

Thekey ingredientmissing in thesemodels is the transportof

ions (in the electrolyte) and electrons (in the conductingmatrix),

which mediates interactions between nanoparticles and be-

comes rate limiting at high current. Conversely, the classical

description of porous electrodes, pioneered by Newman,27,28

focuseson transportbutmostlyneglects the thermodynamicsof

the active materials,26,50 for example, fitting29 rather than

deriving9,23,49,51 the voltage plateau in LFP. These approaches

are unified by nonequilibrium chemical thermodynamics.26

Generalized porous electrode theory is constructed by formally

volume averaging over the microstructure to obtain macro-

scopic reaction-diffusion equations of the form eq 56 for three

overlapping continua, the electrolyte, conducting matrix, and

active material, each containing a source/sink for Faradaic

reactions, integrated over the internal surface of the active

particles, described by the CHR or ACR model.

The simplest case is the “pseudo-capacitor approxima-

tion” of fast solid relaxation (compared with reactions and

macroscopic transport), where the active particles remain

homogeneous. Using our model for LFP nanoparticles,7 the

porous electrode theory predicts the zero-current voltage

gap, without any fitting (Figure 12). (Using the mean particle

size, the gap is somewhat too large, but this can be corrected

by size-dependent nucleation (Figure 11), implying that smal-

ler particles were preferentially cycled in the experiments.)

Voltage fluctuations at low current correspond todiscrete sets

of transforming particles. For a narrow particle size distribu-

tion, mosaic instability sweeps across the electrode from the

separator as a narrow reaction front (Figure 12a, inset). As the

current is increased, the front width grows, and the active

material transforms more uniformly across the porous elec-

trode, limited by electrolyte diffusion. A wide particle size

distribution also broadens the reaction front, as particles

transform in order of increasing size. These examples illus-

trate the complexity of phase transformations in porous

media driven by chemical reactions.

Conclusion
This Account describes a journey along the “middle way”,78

searching for organizing principles of the mesoscopic do-

main between individual atoms and bulk materials. The

motivation to understand phase behavior in Li-ion battery

nanoparticles gradually led to a theory of collective kinetics

at length and time scales in the “middle”, beyond the reach

of both molecular simulations and macroscopic continu-

um models. The work leveraged advances in ab initio

FIGURE 12. Finite-volume simulations of a porous LFP cathode (Ferguson and Bazant26). (a) Voltage versus state of charge at different rates with
profiles of themean solid Li concentration (A�C), separator on the left, current collector on the right. (b) SEM imageof LFPnanoparticles representedby
three finite volumes (P. Bai). (c) Experiments revealing a zero-current gap between noisy charge and discharge voltage plateaus (FromDreyer et al.23).
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quantum-mechanical calculations and nanoscale imaging

but also required some new theoretical ideas.

Besides telling the story, this Account synthesizes my

work as a general theory of chemical physics, which trans-

cends its origins in electrochemistry. The main result, eq 56,

generalizes the Cahn�Hilliard and Allen�Cahn equations

for reaction-diffusion phenomena. The reaction rate is a

nonlinear function of the species activities and the free

energy of reaction (eq 7) via variational derivatives of the

Gibbs free energy functional (eq 51), which are consistently

defined for nonequilibrium states, for example, during a

phase separation. For charged species, the theory gener-

alizes the Poisson�Nernst�Planck equations of ion trans-

port, the Butler�Volmer equation of electrochemical

kinetics (eq 29), and the Marcus theory of charge transfer

(eq 37) for concentrated electrolytes and ionic solids.

As its first application, the theory has predicted new

intercalation mechanisms in phase-separating battery ma-

terials, exemplified by LFP: intercalation waves in anisotro-

pic nanoparticles at low currents (Figure 8); quasi-solid

solutions and suppressed phase separation at high currents

(Figure 9); relaxation to striped phases in partially filled

particles (Figure 10); size-dependent nucleation by surface

wetting (Figure11); andmosaic instabilities and reaction fronts

in porous electrodes (Figure 12). These results have some

unexpected implications, for example, that battery perfor-

mancemaybe improvedwith elevated currents and tempera-

tures, wider particle size distributions, and coatings to alter

surface energies. The model successfully describes phase

behavior of LFP cathodes, and my group is extending it to

graphite anodes (“staging” of Li intercalation with g3 stable

phases) and air cathodes (electrochemical growth of Li2O2).

The general theory may find many other applications in

chemistry and biology. For example, the adsorption model

(Figure 7) could be adapted for the deposition of charged

colloids on transparent electrodes inelectrophoretic displays.

The porous electrode model (Figure 12) could be adapted

for sorption/desorption kinetics in nanoporous solids, for

example, for drying cycles of cementitious materials, release

of shale gas by hydraulic fracturing, carbon sequestration in

zeolites, or ion adsorption and impulse propagation in bio-

logical cells. The common theme is the coupling of chemical

kinetics with nonequilibrium thermodynamics.
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my postdoctoral associates (D. A. Cogswell, G. Singh) and stu-
dents (P. Bai, D. Burch, T. R. Ferguson, E. Khoo, R. Smith, Y. Zeng).
P. Bai noted the Nernst factor in eq 39.

Note Added after ASAP Publication. This paper was

posted to theWEB on March 22, 2013 with errors in several

equations. The revised version was reposted on April 11,

2013.
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